Abstract
Initially, tas2r receptors were believed to be only in the taste cells of the tongue, from where they sent signals to the central nervous system to avoid ingesting toxic plants. However, recent research has demonstrated expression of these in other tissues, including airway smooth muscle, arteries, detrusor, stomach cells, and endometrium.
This review investigated the expression and function of tas2r in smooth muscle through a literature search in PubMed and Scielo, following the prism prompts and using the keywords: bitter taste receptors, function and smooth muscle. 30 of 34 articles obtained that met the inclusion and exclusion criteria were analyzed.
In humans, the tas2r2, tas2r10, tas2r14 and tas2r31 subtypes are the most expressed in airway smooth muscle. Agonists of these receptors cause smooth muscle relaxation comparable to that of β-agonist bronchodilators, suggesting that they could be used in treatments for asthma and COPD. Additionally, some tas2r agonists have been shown to be more effective than current adrenergic bronchodilators in both mice and humans, thus offering better treatment options for asthma.
Tas2r are also present in the gastrointestinal system, where they modulate hormonal levels and improve the secretion of body fluids. Its participation has been observed in energy homeostasis and the secretion of hormones such as ghrelin. In the cardiovascular system, tas2r perform inotropic functions and generate relaxation of the aorta and other arteries, suggesting a role in regulating vascular tone.
In the genitourinary system, tas2r regulates inflammatory responses and detrusor muscle contractility, providing potential to treat overactive bladder. Furthermore, they appear to influence the relaxation of the myometrium, which is why they represent a target for the development of effective tocolytics in the management of premature birth.
In conclusion, tas2r are widely distributed in various tissues outside the oral cavity, and play crucial roles in physiological regulation. Tas2r agonists could hold promise for new treatments of respiratory, cardiovascular, gastrointestinal, and genitourinary diseases. However, additional studies are required to clarify its mechanisms of action and explore other potential functions.
References
An, S. S., Wang, W. C. H., Koziol-White, C. J., Ahn, K., Lee, D. Y., Kurten, R. C., Panettieri, R. A., Jr y Liggett, S. B. (2012). tas2r activation promotes airway smooth muscle relaxation despite β2-adrenergic receptor tachyphylaxis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303(4), L304-L311. https://doi.org/10.1152/ajplung.00126.2012
Avau, B., Rotondo, A., Thijs, T., Andrews, C. N., Janssen, P., Tack, J. y Depoortere, I. (2015). Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Scientific Reports, 5(1). https://doi.org/10.1038/srep15985
Cai, Y., Lei, Y., Chen, J., Cao, L., Yang, X., Zhang, K. y Cao, Y. (2019). Erythromycin relaxes balb/c mouse airway smooth muscle. Life Sciences, 221, 135-142. https://doi.org/10.1016/j.lfs.2019.02.009
Cazzola, M., Rogliani, P. y Matera, M. G. (2019). The future of bronchodilation: looking for new classes of bronchodilators. European Respiratory Review: An Official Journal of the European Respiratory Society, 28(154), 190095. https://doi.org/10.1183/16000617.0095-2019
Chen, J.-G., Ping, N.-N., Liang, D., Li, M.-Y., Mi, Y.-N., Li, S., Cao, L., Cai, Y. y Cao, Y.-X. (2017). The expression of bitter taste receptors in mesenteric, cerebral and omental arteries. Life Sciences, 170, 16-24. https://doi.org/10.1016/j.lfs.2016.11.010
Cieri, R. L. (2019). Pulmonary smooth muscle in vertebrates: A comparative review of structure and function. Integrative and Comparative Biology, 59(1), 10-28. https://doi.org/10.1093/icb/icz002
Deshpande, D. A., Wang, W. C. H., McIlmoyle, E. L., Robinett, K. S., Schillinger, R. M., An, S. S., Sham, J. S. K. y Liggett, S. B. (2010). Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nature Medicine, 16(11), 1299-1304. https://doi.org/10.1038/nm.2237
Di Pizio, A. (2024). A bitter taste receptor activated in a surprising way. Nature, 628(8008), 506-507. https://doi.org/10.1038/d41586-024-00712-6
Hern.ndez Calder.n, M. Ll. y D.az Barriga Arceo, S. (2019). La bioqu.mica y fisiolog.a del sabor. Revista de Educación Bioquímica, 38(4), 100-1104. https://www.medigraphic. com/cgi-bin/new/resumen.cgi?IDARTICULO=91166
Janssen, S., Laermans, J., Verhulst, P.-J., Thijs, T., Tack, J. y Depoortere, I. (2011). Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proceedings of the National Academy of Sciences of the United States of America, 108(5), 2094-2099. https:// doi.org/10.1073/pnas.1011508108
Jeruzal-Świątecka, J., Fendler, W. y Pietruszewska, W. (2020). Clinical role of extraoral bitter taste receptors. International Journal of Molecular Sciences, 21(14), 5156. https://doi.org/10.3390/ijms21145156
Jia, F., Ji, R., Qiao, G., Sun, Z., Chen, X. y Zhang, Z. (2023). Amarogentin inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia via ampk activation. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1869(5), 166667. https://doi.org/10.1016/j.bbadis.2023.166667
Kim, D., Woo, J. A., Geffken, E., An, S. S. y Liggett, S. B. (2017). Coupling of airway smooth muscle bitter taste receptors to intracellular signaling and relaxation is via Gαi1,2,3. American Journal of Respiratory Cell and Molecular Biology, 56(6), 762-771. https://doi.org/10.1165/rcmb.2016-0373oc
Liggett, S. B. (2013). Bitter taste receptors on airway smooth muscle as targets for novel bronchodilators. Expert Opinion on Therapeutic Targets, 17(6), 721-731. https://doi.org/10.1517%2F14728222.2013.782395
Liu, M., Qian, W., Subramaniyam, S., Liu, S. y Xin, W. (2020). Denatonium enhanced the tone of denuded rat aorta via bitter taste receptor and phosphodiesterase activation. European Journal of Pharmacology, 872, 172951. https://doi.org/10.1016/j.ejphar.2020.172951
Lund, T. C., Kobs, A. J., Kramer, A., Nyquist, M., Kuroki, M. T., Osborn, J., Lidke, D. S., Low-Nam, S. T., Blazar, B. R. y Tolar, J. (2013). Bone marrow stromal and vascular smooth muscle cells have chemosensory capacity via bitter taste receptor expression. PloS One, 8(3), e58945. https://doi.org/10.1371/journal.pone.0058945
Luo, M., Yu, P., Ni, K., Jin, Y., Liu, L., Li, J., Pan, Y. y Deng, L. (2020). Sanguinarine rapidly relaxes rat airway smooth muscle cells dependent on tas2r signaling. Biological & Pharmaceutical Bulletin, 43(7), 1027-1034. https://doi.org/10.1248/bpb.b19-00825
Manson, M. L., S.fholm, J., Al-Ameri, M., Bergman, P., Orre, A.-C., Sw.rd, K., James, A., Dahl.n, S.-E. y Adner, M. (2014). Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle. European Journal of Pharmacology, 740, 302-311. https://doi.org/10.1016/j.ejphar.2014.07.005
Michel, M. C. y Parra, S. (2008). Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle. Naunyn-Schmiedeberg’s Archives of Pharmacology, 378(2), 217-224. https://doi.org/10.1007/s00210-008-0316-5
Mikami, M., Zhang, Y., Danielsson, J., Joell, T., Yong, H. M., Townsend, E., Khurana, S., An, S. S. y Emala, C. W. (2017). Impaired relaxation of airway smooth muscle in mice lacking the actin-binding protein gelsolin. American Journal of Respiratory Cell and Molecular Biology, 56(5), 628-636. https://doi.org/10.1165/rcmb.2016-0292oc
Ni, K., Che, B., Gu, R., Wang, C., Xu, H., Li, H., Cen, S., Luo, M. y Deng, L. (2024). Bitterdb database analysis plus cell stiffness screening identify flufenamic acid as the most potent tas2r14-based relaxant of airway smooth muscle cells for therapeutic bronchodilation. Theranostics, 14(4), 1744-1763. https://doi.org/10.7150/thno.92492
Sanderson, M. J. y Madison, J. M. (2010). Bitter treats for better breathing. Nature Medicine, 16(11), 1190-1191. https://doi.org/10.1038/nm1110-1190
Sharma, P., Panebra, A., Pera, T., Tiegs, B. C., Hershfeld, A., Kenyon, L. C. y Deshpande, D. A. (2016). Antimitogenic effect of bitter taste receptor agonists on airway
smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310(4), L365-L376. https://doi.org/10.1152/ajplung.00373.2015
Sharma, P., Yi, R., Nayak, A. P., Wang, N., Tang, F., Knight, M. J., Pan, S., Oliver, B. y Deshpande, D. A. (2017). Bitter taste receptor agonists mitigate features of allergic asthma in mice. Scientific Reports, 7(1). https://doi.org/10.1038/srep46166 Servier Medical Art. https://smart.servier.com/
Tricco, A. C., Lillie, E., Zarin, W., Obrien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D., Horsley, T. y Weeks, L. (2018). prisma Extension for Scoping Reviews (prisma-scr): Checklist and Explanation. priprisma Extension for Scoping Reviews, 169, 467-473. https://doi.org/10.7326/m18-0850
Tuzim, K. y Korolczuk, A. (2021). Correction to: An update on extra-oral bitter taste receptors. Journal of Translational Medicine, 19(1). https://doi.org/10.1186/s12967-021-03137-1
Vancleef, L., Thijs, T., Baert, F., Ceulemans, L. J., Canovai, E., Wang, Q., Steensels, S., Segers, A., Farr., R., Pirenne, J., Lannoo, M., Tack, J. y Depoortere, I. (2018). Obesity impairs oligopeptide/amino acid-induced ghrelin release and smooth muscle contractions in the human proximal stomach. Molecular Nutrition & Food Research, 62(5). https://doi.org/10.1002/mnfr.201700804
Wang, W. C. H., Pauer, S. H., Smith, D. C., Dixon, M. A., Disimile, D. J., Panebra, A., An, S. S., Camoretti-Mercado, B. y Liggett, S. B. (2014). Targeted transgenesis identifies Gαsas the bottleneck in β2-adrenergic receptor cell signaling and physiological function in airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 307(10), L775-L780. https://doi.org/10.1152/ajplung.00209.2014
Wang, Y., Wang, A., Zhang, M., Zeng, H., Lu, Y., Liu, L., Li, J. y Deng, L. (2019). Artesunate attenuates airway resistance in vivo and relaxes airway smooth muscle cells in vitro via bitter taste receptor‐dependent calcium signalling. Experimental Physiology, 104(2), 231-243. https://doi.org/10.1113/ep086824
Webb, R. C. (2003). Smooth muscle contraction and relaxation. Advances in Physiology Education, 27(4), 201-206. https://doi.org/10.1152/advan.00025.2003
Welcome, M. O. (2020). The bitterness of genitourinary infections: Properties, ligands of genitourinary bitter taste receptors and mechanisms linking taste sensing to inflammatory processes in the genitourinary tract. European Journal of Obstetrics and Gynecology and Reproductive Biology, 247, 101-110.https://doi.org/10.1016/j.ejogrb.2020.02.015
Wen, X., Zhou, J., Zhang, D., Li, J., Wang, Q., Feng, N., Zhu, H., Song, Y., Li, H. y Bai, C. (2015). Denatonium inhibits growth and induces apoptosis of airway epithelial cells through mitochondrial signaling pathways. Respiratory Research, 16(1). https://doi.org/10.1186/s12931-015-0183-9
Zhai, K., Yang, Z., Zhu, X., Nyirimigabo, E., Mi, Y., Wang, Y., Liu, Q., Man, L., Wu, S., Jin, J. y Ji, G. (2016). Activation of bitter taste receptors (tas2rs) relaxes detrusor smooth muscle and suppresses overactive bladder symptoms. Oncotarget, 7(16), 21156-21167. https://doi.org/10.18632/oncotarget.8549
Zhang, C.-H., Lifshitz, L. M., Uy, K. F., Ikebe, M., Fogarty, K. E. y ZhuGe, R. (2013). The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biology, 11(3), e1001501. https://doi.org/10.1371/journal.pbio.1001501
Zheng, K., Lu, P., Delpapa, E., Bellve, K., Deng, R., Condon, J. C., Fogarty, K., Lifshitz,L. M., Simas, T. A. M., Shi, F. y ZhuGe, R. (2017). Bitter taste receptors as targetsfor tocolytics in preterm labor therapy. faseb Journal: Official Publication of the Federation of American Societies for Experimental Biology, 31(9), 4037-4052. https://doi.org/10.1096/fj.201601323rr